- 1 You are given that  $f(x) = \cos x + \lambda \sin x$  where  $\lambda$  is a positive constant.
  - (i) Express f(x) in the form  $R\cos(x-\alpha)$ , where R > 0 and  $0 < \alpha < \frac{1}{2}\pi$ , giving R and  $\alpha$  in terms of  $\lambda$ . [4]
  - (ii) Given that the maximum value (as x varies) of f(x) is 2, find R,  $\lambda$  and  $\alpha$ , giving your answers in exact form. [4]
  - 2 Fig. 7 shows the curve BC defined by the parametric equations

$$x = 5 \ln u, \ y = u + \frac{1}{u}, \ 1 \le u \le 10$$

The point A lies on the *x*-axis and AC is parallel to the *y*-axis. The tangent to the curve at C makes an angle  $\theta$  with AC, as shown.





- (i) Find the lengths OA, OB and AC. [5]
- (ii) Find  $\frac{dy}{dx}$  in terms of *u*. Hence find the angle  $\theta$ . [6]
- (iii) Show that the cartesian equation of the curve is  $y = e^{\frac{1}{5}x} + e^{-\frac{1}{5}x}$ . [2]
- An object is formed by rotating the region OACB through 360° about Ox.
- (iv) Find the volume of the object. [5]

3 A curve has parametric equations

$$x = 2\sin\theta, \quad y = \cos 2\theta.$$

(i) Find the exact coordinates and the gradient of the curve at the point with parameter  $\theta = \frac{1}{3}\pi$ . [5]

(ii) Find y in terms of x. [2]

4 The parametric equations of a curve are

 $x = \cos 2\theta$ ,  $y = \sin \theta \cos \theta$  for  $0 \le \theta < \pi$ .

Show that the cartesian equation of the curve is  $x^2 + 4y^2 = 1$ .

Sketch the curve.

[5]

5 Part of the track of a roller-coaster is modelled by a curve with the parametric equations

 $x = 2\theta - \sin \theta$ ,  $y = 4\cos \theta$  for  $0 \le \theta \le 2\pi$ .

This is shown in Fig. 8. B is a minimum point, and BC is vertical.





(i) Find the values of the parameter at A and B.

Hence show that the ratio of the lengths OA and AC is  $(\pi - 1) : (\pi + 1)$ . [5]

- (ii) Find  $\frac{dy}{dx}$  in terms of  $\theta$ . Find the gradient of the track at A. [4]
- (iii) Show that, when the gradient of the track is 1,  $\theta$  satisfies the equation

$$\cos\theta - 4\sin\theta = 2.$$
 [2]

(iv) Express  $\cos \theta - 4 \sin \theta$  in the form  $R \cos(\theta + \alpha)$ .

Hence solve the equation  $\cos \theta - 4 \sin \theta = 2$  for  $0 \le \theta \le 2\pi$ . [7]

6 A curve has parametric equations

$$x = at^3, \quad y = \frac{a}{1+t^2},$$

where *a* is a constant.

Show that 
$$\frac{dy}{dx} = \frac{-2}{3t(1+t^2)^2}$$
.

Hence find the gradient of the curve at the point  $(a, \frac{1}{2}a)$ . [7]

7 A curve has parametric equations  $x = 1 + u^2$ ,  $y = 2u^3$ .

(i) Find 
$$\frac{dy}{dx}$$
 in terms of  $u$ . [3]

(ii) Hence find the gradient of the curve at the point with coordinates (5, 16). [2]

## 8 A curve is defined by parametric equations

$$x = \frac{1}{t} - 1, \ y = \frac{2+t}{1+t}$$

Show that the cartesian equation of the curve is  $y = \frac{3+2x}{2+x}$ . [4]