1 You are given that $\mathrm{f}(x)=\cos x+\lambda \sin x$ where λ is a positive constant.
(i) Express $\mathrm{f}(x)$ in the form $R \cos (x-\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$, giving R and α in terms of λ.
(ii) Given that the maximum value (as x varies) of $\mathrm{f}(x)$ is 2 , find R, λ and α, giving your answers in exact form.

2 Fig. 7 shows the curve BC defined by the parametric equations

$$
x=5 \ln u, y=u+\frac{1}{u}, \quad 1 \leqslant u \leqslant 10
$$

The point A lies on the x-axis and AC is parallel to the y-axis. The tangent to the curve at C makes an angle θ with AC , as shown.

Fig. 7
(i) Find the lengths OA, OB and AC .
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of u. Hence find the angle θ.
(iii) Show that the cartesian equation of the curve is $y=\mathrm{e}^{\frac{1}{5} x}+\mathrm{e}^{-\frac{1}{5} x}$.

An object is formed by rotating the region OACB through 360° about $\mathrm{O} x$.
(iv) Find the volume of the object.

3 A curve has parametric equations

$$
x=2 \sin \theta, \quad y=\cos 2 \theta .
$$

(i) Find the exact coordinates and the gradient of the curve at the point with parameter $\theta=\frac{1}{3} \pi$. [5]
(ii) Find y in terms of x.

4 The parametric equations of a curve are

$$
x=\cos 2 \theta, \quad y=\sin \theta \cos \theta \quad \text { for } 0 \leqslant \theta<\pi .
$$

Show that the cartesian equation of the curve is $x^{2}+4 y^{2}=1$.
Sketch the curve.

5 Part of the track of a roller-coaster is modelled by a curve with the parametric equations

$$
x=2 \theta-\sin \theta, \quad y=4 \cos \theta \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi .
$$

This is shown in Fig. 8. B is a minimum point, and BC is vertical.

Fig. 8
(i) Find the values of the parameter at A and B.

Hence show that the ratio of the lengths OA and AC is $(\pi-1):(\pi+1)$.
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ. Find the gradient of the track at A .
(iii) Show that, when the gradient of the track is $1, \theta$ satisfies the equation

$$
\cos \theta-4 \sin \theta=2
$$

(iv) Express $\cos \theta-4 \sin \theta$ in the form $R \cos (\theta+\alpha)$.

Hence solve the equation $\cos \theta-4 \sin \theta=2$ for $0 \leqslant \theta \leqslant 2 \pi$.

6 A curve has parametric equations

$$
x=a t^{3}, \quad y=\frac{a}{1+t^{2}}
$$

where a is a constant.
Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2}{3 t\left(1+t^{2}\right)^{2}}$.
Hence find the gradient of the curve at the point ($a, \frac{1}{2} a$).

7 A curve has parametric equations $x=1+u^{2}, y=2 u^{3}$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of u.
(ii) Hence find the gradient of the curve at the point with coordinates $(5,16)$.

8 A curve is defined by parametric equations

$$
x=\frac{1}{t}-1, y=\frac{2+t}{1+t} .
$$

Show that the cartesian equation of the curve is $y=\frac{3+2 x}{2+x}$.

